
Introduction to Statistics in R

Catherine Barber

2022-10-31

Goal and Learning Outcomes

Goal: The goal of this lesson is for you to navigate in RStudio and use R functions to complete basic data
analysis tasks and visualizations.

Learning Outcomes: During this lesson, you will demonstrate your ability to. . .

• Import data from a csv fle.
• Assign data to objects.
• Explore analyze data with basic statistics.
• Create histograms, boxplots, and scatterplots.

Figure 1: Math Anxiety; image by Chuk Yong from Pixabay - free license for commercial use

Scenario: An Experiment to Reduce Math Anxiety in a Statistics Class

You are working in a research lab of a faculty member who is interested in psychosocial interventions to
reduce anxiety in academic settings. Your team has just fnished running an experiment. Twenty students
in an introductory statistics class were randomly sampled and agreed to participate.

1

At the time of enrollment in the study, the participants completed a 100-point statistics pretest assessing their
baseline knowledge of statistics. In addition, participants completed a 20-point measure of trait anxiety and
a 100-point measure of college-level math knowledge. They also indicated their major (coded as a number):
psychology (1), sociology (2), or political science (3). The

You and your team then randomly assigned participants to one of two groups, also coded as a number:

• The treatment group (1) received 30 minutes of math-related relaxation training weekly.
• The control group (2) received 30 minutes of group math practice and coaching weekly.

The intervention phase continued for six weeks, during which time all participants attended their statistics
class as usual.

After six weeks, the participants completed an equivalent-forms, 100-point statistics posttest and a 30-point
measure of state anxiety.

Finally, a team member did a quick calculation to determine each participant’s diference score, computed
as the diference between the posttest and the pretest.

The data were manually entered into a spreadsheet and saved as a CSV fle. You are now ready to start
working with the dataset!

Import the Dataset

When working in RStudio, you can import a fle directly into the Global Environment using a point-and-click
method or by calling the function read.csv() on a fle path. This lesson covers both options.

Importing Using the GUI

In the Environment tab of the Global Environment pane, click Import Dataset and select the fle format
that best fts your dataset. In this lesson, you will select From Text (base) because the data are stored in a
CSV fle.

Figure 2: GUI import

2

Name the dataset demo_data and select Yes for Heading; this will read in the frst row of data (variable
names) as column headings. In the current example, do not check the Strings as factors box; however, be
aware that if you want R to treat strings as factors (e.g., if Treatment and Control groups were coded as
strings rather than as numbers), you could check this box to automatically treat those string variables as
factors upon import.

Figure 3: Import interface

Finally, click Import, and your data are now available in a dataframe object in the Global Environment!

Importing Using read.csv() and the File Name/Path

Begin by saving the CSV fle in your current working directory. If you aren’t sure what directory you are in,
remember that you can call getwd() to check and call setwd() with your preferred directory path as the
argument to change the working directory.

Next, use read.csv to import your data as a dataframe with the name demo_data. If the fle is already in
the working directory, you will simply indicate the fle name as the argument; otherwise, the fle path will
be specifed. Note that the fle path will be specifc to your directory structure.

3

demo_data <- read.csv("demo_data.csv", stringsAsFactors = FALSE)

You should see the dataframe demo_data in your Global Environment. Next, take a look at this object’s
structure.

Examine the Structure of the Dataframe

str(demo_data)

’data.frame’: 20 obs. of 9 variables:
$ ID : int 1 2 3 4 5 6 7 8 9 10 ...
$ group : int 1 1 1 1 1 1 1 1 1 1 ...
$ pretest : int 60 55 82 74 69 90 88 68 76 80 ...
$ posttest : int 80 72 95 88 83 96 96 86 89 92 ...
$ trait_anxiety: int 2 18 6 10 12 3 2 12 9 1 ...
$ difference : int 20 17 13 14 14 6 8 18 13 12 ...
$ major : int 1 2 3 1 2 3 1 2 3 1 ...
$ state_anxiety: int 20 26 5 12 6 1 4 10 11 5 ...
$ math_score : int 40 35 90 70 92 97 90 88 86 92 ...

This output reveals that the dataframe has 20 observations of 9 variables.

Prepare the Dataframe

All variables were imported as integer data, as the team had previously coded the two categorical variables
(group and major) with numeric codes. However, you want to treat these two variables as factors, so you
need to convert them to factors. In addition, you want to remove the variable demo_data$ID, as it contains
redundant information.

Create Factors

You can use the as.factor() function to convert numeric data to a factor. Recall that variables (columns in
the dataframe) do not exist as separate objects in the Global Environment; to work with them, you must refer
to these variables in the context of the dataframe. For example, the group variable (treatment vs. control)
is demo_data$group, and the major variable (psychology, sociology, political science) is demo_data$major.

demo_data$group <- as.factor(demo_data$group)
demo_data$major <- as.factor(demo_data$major)

Now check the structure of demo_data again to see what has changed.

str(demo_data)

’data.frame’: 20 obs. of 9 variables:
$ ID : int 1 2 3 4 5 6 7 8 9 10 ...
$ group : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
$ pretest : int 60 55 82 74 69 90 88 68 76 80 ...
$ posttest : int 80 72 95 88 83 96 96 86 89 92 ...

4

$ trait_anxiety: int 2 18 6 10 12 3 2 12 9 1 ...
$ difference : int 20 17 13 14 14 6 8 18 13 12 ...
$ major : Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...
$ state_anxiety: int 20 26 5 12 6 1 4 10 11 5 ...
$ math_score : int 40 35 90 70 92 97 90 88 86 92 ...

Both group and major are now listed as factors, and the number of levels (2 and 3, respectively) is indicated.

Remove Unnecessary Variables

You may recall from a previous lesson that indexing can be used to look at and save parts of a dataframe.
The current dataframe demo_data includes an unnecessary variable–ID. To remove that variable and save
the result in a new object called d, use an index:

d <- demo_data[,c(2:9)]

Recall that the absence of a number or criterion before the comma tells R to return all rows. The vector
following the comma tells R which columns to return (in this case, all columns except column 1: ID). The
result is a slightly narrower dataframe named d, containing 20 rows and 8 variables.

Obtain Summary Statistics

The function summary can be used to obtain summary statistics on all integer, numeric, and factor variables
in the dataset.

summary(d)

group pretest posttest trait_anxiety difference major
1:10 Min. :55.00 Min. :66.00 Min. : 1.00 Min. : 4.00 1:7
2:10 1st Qu.:63.50 1st Qu.:79.25 1st Qu.: 3.75 1st Qu.: 6.75 2:7
Median :75.00 Median :86.50 Median : 7.50 Median :12.00 3:6
Mean :73.65 Mean :84.80 Mean : 8.00 Mean :11.15
3rd Qu.:81.25 3rd Qu.:92.25 3rd Qu.:11.25 3rd Qu.:13.25
Max. :92.00 Max. :96.00 Max. :18.00 Max. :20.00
state_anxiety math_score
Min. : 1.0 Min. :32.00
1st Qu.: 5.0 1st Qu.:52.75
Median :11.0 Median :80.50
Mean :12.4 Mean :71.60
3rd Qu.:20.0 3rd Qu.:90.00
Max. :28.0 Max. :97.00

The output includes the number of observations in each level of the factors (e.g., 10 in the treatment group
and 10 in the control group) as well as the minimum, frst quartile, median, mean, third quartile, and
maximum values for each continuous variable.

Obtain Descriptive Statistics for Specifc Variables

At times, you may want just one or two descriptive statistics for specifc variables rather than all of the
output provided by summary(). This is particularly true when you want to use a statistic as the argument

5

of another function or when you want to embed a statistic within a larger chunk of code. Alternatively, you
may want to calculate a statistic that was not included in the summary statistics provided by summary().
In each case, you can call a specifc statistical function on a specifc variable.

mean(d$pretest)

[1] 73.65

median(d$pretest)

[1] 75

min(d$pretest)

[1] 55

max(d$pretest)

[1] 92

sd(d$pretest)

[1] 11.23095

The output includes the mean, median, minimum, maximum, and standard deviation for the entire sample’s
pretest scores.

Obtain Descriptive Statistics for Subgroups

Recall from a previous lesson that the function tapply() can be used to repeat a function (such as the mean
or standard deviation) across all levels of a factor. For example, you want to obtain the mean and standard
deviation of pretest scores for the treatment and control groups separately.

tapply(d$pretest, d$group, mean, na.rm = TRUE)

1 2
74.2 73.1

tapply(d$pretest, d$group, sd, na.rm = TRUE)

1 2
11.41928 11.62803

Note that the output includes two small arrays–the means and standard deviations for the two groups.

In these commands, you added an argument that was not necessary for your data but that is extremely
important when there are missing data: na.rm = TRUE. This argument tells R to remove any rows that

6

have NA rather than a value for the variable being evaluated. If you fail to include this argument and your
variable has missing data, R will return an error.

As another example of tapply(), let’s say that you are interested in calculating summary statistics for the
three majors within each of the experimental groups. You will need to use the function list() to specify
the factors in the argument.

tapply(d$pretest, list(d$group, d$major), mean, na.rm = TRUE)

1 2 3
1 75.5 64.00 82.66667
2 70.0 77.25 70.66667

tapply(d$pretest, list(d$group, d$major), sd, na.rm = TRUE)

1 2 3
1 11.818065 7.81025 7.023769
2 8.888194 9.17878 18.583146

The output includes an array of six means (one for each of the majors in the treatment group and in the
control group) and an array of six standard deviations.

Note that there are other ways to obtain the same results in a diferent format. To learn more, view the
Intermediate lesson on the dplyr package and explore the mutate() and summarize() functions of this
package.

Create a Histogram

As part of the initial data exploration process, you may wish to generate a histogram to examine the
distribution of values for a variable. The most basic histogram on pretest scores, for example, is generated
with this script:

hist(d$pretest)

7

Histogram of d$pretest

d$pretest

F
re

qu
en

cy

60 70 80 90

0
1

2
3

4

The plot shows the possibility of a bimodal distribution (i.e., a relatively large number of participants who
scored in the lower range and a relatively large number of participants who scored in the upper range of the
pretest).

Now you want to improve the aesthetic quality of the histogram by adding some arguments, including
adjusting the range of values on the x axis, modifying the color, and clarifying the x and y axis labels as
well as the main title of the plot.

hist(d$pretest,
xaxp = c(55, 95, 10),
col = "violet",
xlab = "Pretest Scores",
ylab = "n",
main = "Histogram of Pretest Scores")

8

Histogram of Pretest Scores

Pretest Scores

n

55 59 63 67 71 75 79 83 87 91 95

0
1

2
3

4

The additional arguments do not increase the number of bins in this case, but the actual values of the bins
are clarfed. The color is more eye-catching, and the labels and titles are improved.

Create Histograms for Subgroups

At times you will want to plot chunks of your data rather than data for the entire sample. For example,
you and your research team want to look at the distribution of pretest scores for the treatment and control
groups separately. You will frst create two new objects (a vector of pretest scores for the treatment group
and a vector of pretest scores for the control group).

treat_pre <- d[d$group == 1, "pretest"]
control_pre <- d[d$group == 2, "pretest"]

Next, you will specify coordinate parameters using par() so that both histograms appear in the same plot;
the code for the two histograms is “sandwiched” between these parameter codes.

par(mfrow = c(2, 1))
hist(treat_pre, breaks = 10, col = "cyan")
hist(control_pre, breaks = 10, col = "magenta")

9

Histogram of treat_pre

treat_pre

F
re

qu
en

cy

55 60 65 70 75 80 85 90

0
2

Histogram of control_pre

control_pre

F
re

qu
en

cy

60 70 80 90

0
2

par(mfrow = c(1, 1))

The output is two histograms; additional arguments could be added to adjust the labels and x axis, but this
basic example illustrates the concept of plotting histograms for subgroups.

One note: Within the function hist(), the argument breaks = 10 provides the number of bins that the
data should be divided into. However, R treats this as a suggestion and will adjust the actual number of
bins based on the overall number of cases and the frequency within each bin. Particularly with larger sample
sizes, you may want to try out several diferent breaks (or diferent intervals within the xaxp argument) to
determine which best represents the data.

Create a Boxplot

Another common exploratory visualization is a boxplot, which shows the median of a sample (or of sub-
groups), the interquartile range, and outliers. Begin by creating a basic boxplot of pretest scores for the two
experimental groups separately:

boxplot(d$posttest ~ d$group)

10

1 2

65
70

75
80

85
90

95

d$group

d$
po

st
te

st

The output reveals that the treatment group (i.e., group 1) has a higher median posttest score than the
control group (i.e., group 2).

Now add some arguments to make the boxplot more appealing:

boxplot(d$posttest ~ d$group,
xlab = "Experimental Group",
ylab = "Posttest Score",
mean = "Statistics Posttest Scores by Group",
col = c("cyan", "magenta"),
names = c("Treatment", "Control"))

11

Treatment Control

65
70

75
80

85
90

95

Experimental Group

P
os

tte
st

 S
co

re

This is the same plot, but with color, group names, and improved labels and title.

Compare Two Group Means with an Independent Samples t Test

Your research team wants to know if the experimental groups difered signifcantly on the variable
d$difference, i.e., the diference score (posttest - pretest). An independent samples t test can help to
answer this question.

The function t.test() takes two arguments: the outcome (or dependent) variable and the grouping (or
independent) variable, the latter of which should be a factor. Note that the two variables are separated with
~:

t.test(d$difference ~ d$group)

Welch Two Sample t-test

data: d$difference by d$group
t = 2.6737, df = 17.417, p-value = 0.0158
alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0
95 percent confidence interval:
0.9980282 8.4019718
sample estimates:
mean in group 1 mean in group 2
13.5 8.8

12

The output shows that the two groups difered signifcantly in the size of their mean diference scores, with
the treatment group having a mean diference of 13.5 points from pre to post and the control group having
a mean diference of 8.8 points from pre to post: t(17.42) = 2.67, p = .02. If these groups were randomly
sampled from the population of all statistics students, you could conclude that there is only a small chance
that you would obtain this large of a diference between groups if no such diference existed in the population.

Compare Two Means from the Same Group with a Paired Samples t Test

Your team is also curious whether the sample as a whole improved from pre to post, so now you want to
conduct a paired samples t test. Once again, the function t.test() is used; however, this time the arguments
are the frst measure, the second measure, and paired = TRUE:

t.test(d$pretest, d$posttest, paired = TRUE)

Paired t-test

data: d$pretest and d$posttest
t = -11.027, df = 19, p-value = 1.066e-09
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
-13.26644 -9.03356
sample estimates:
mean difference
-11.15

The output shows a signifcant diference between pretest and posttest scores for the entire sample, with an
overall mean diference of 11.15 points: t(19) = -11.03, p < .0001. (Note that the actual p value is much
smaller, but convention encourages you to report to the ten-thousandths place at most.) Once again, it
is unlikely that you would obtain such a large diference from pretest to posttest in the sample if such a
diference did not exist in the population.

Compare Multiple Group Means with a One-way ANOVA

Many comparisons involve more than two groups. For example, there were three majors involved in the study:
psychology, sociology, and political science. You want to know if there were any diferences among these
groups in terms of the diference scores (i.e., posttest - pretest). A one-way analysis of variance (ANOVA)
allows to you make such comparisons:

major_anova <- aov(d$difference ~ d$major)
summary(major_anova)

Df Sum Sq Mean Sq F value Pr(>F)
d$major 2 12.9 6.43 0.291 0.751
Residuals 17 375.7 22.10

In this case, there were no signifcant diferences among the means: F(2, 11.32) = 0.29, p = 0.75. However,
if there were signifcant diferences, additional posthoc tests would be needed. One option is TukeyHSD(),
which takes as its argument the name of the ANOVA object you created (in this case, major_anova). Note,
however, that you would not actually conduct Tukey HSD tests to follow up the current ANOVA result, as
the latter was not signifcant.

13

Examine Relationships with a Correlation Coefcient

At times, you may want to examine the relationship between two continuous variables. For example, you and
your team want to know if there is a relationship between participants’ math scores and their scores on the
measure of state anxiety (i.e., how anxious they felt at the time of the test). A correlation coefcient such as
Pearson’s product-moment correlation coefcient (r) is a good choice if the two variables are approximately
normally distributed and if the relationship between them is linear. Calculate r for the two variables using
cor.test():

cor.test(d$math_score, d$state_anxiety, method = "pearson")

Pearson’s product-moment correlation

data: d$math_score and d$state_anxiety
t = -15.113, df = 18, p-value = 1.137e-11
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.9854500 -0.9064556
sample estimates:
cor
-0.9627806

The output shows that there is a very large (almost perfect) negative correlation between these two variables
and that the relationship is signifcant: r = -.96, t(18) = -15.11, p < .0001. Such a large correlation would
be unlikely in a real study, but it illustrates the concept of a strong relationship between two variables.

Create a Scatterplot

It is helpful to visualize the relationship between the variables to ensure that it is indeed linear and to look
for outliers. In base R, the function plot() creates a scatterplot of two variables.

plot(d$math_score ~ d$state_anxiety)

14

0 5 10 15 20 25

30
40

50
60

70
80

90

d$state_anxiety

d$
m

at
h_

sc
or

e

The output shows a linear and strongly negative relationship between the two variables (as indicated by the
correlation coefcient). Now add some arguments and a regression line to make the plot more informative:

plot(d$math_score ~ d$state_anxiety,
col = "blue",
main = "Math Score Plotted Against State Anxiety",
xlab = "State Anxiety Score",
ylab = "Math Score")

abline(lm(d$math_score ~ d$state_anxiety))

15

0 5 10 15 20 25

30
40

50
60

70
80

90
Math Score Plotted Against State Anxiety

State Anxiety Score

M
at

h
S

co
re

Note that the order of additional arguments (point color, main title, and axis labels) within plot() does
not matter. The output is the same plot, with minor aesthetic improvements and the regression line that
allows you to visualize the extent to which the dots deviate from the line.

Calculate Correlations Among Multiple Variables

So far, you have been working with the entire datarame, d. There are some functions that operate on the
entire dataframe, so you will need to create a new dataframe that includes only the needed variables. For
example, if you want to obtain a correlation matrix of all continuous variables, you will need to create an
object that omits the factor variables.

Prepare the Data for Additional Analyses

Ensure that you have installed the tidyverse package with install.packages(). Then load the package
and create a new object, d2.

library(tidyverse)
d2 <- select(d, -group, - major)

Create a Correlation Matrix

The function cor() is called upon an entire dataframe; because you have prepared the dataframe to include
only continuous variables, you can call cor() on d2:

16

cor(d2)

pretest posttest trait_anxiety difference state_anxiety
pretest 1.0000000 0.9211587 -0.7691706 -0.6123984 -0.8664105
posttest 0.9211587 1.0000000 -0.8065450 -0.2564444 -0.9217842
trait_anxiety -0.7691706 -0.8065450 1.0000000 0.2719390 0.6771587
difference -0.6123984 -0.2564444 0.2719390 1.0000000 0.2793539
state_anxiety -0.8664105 -0.9217842 0.6771587 0.2793539 1.0000000
math_score 0.8045917 0.8642849 -0.5539325 -0.2426224 -0.9627806
math_score
pretest 0.8045917
posttest 0.8642849
trait_anxiety -0.5539325
difference -0.2426224
state_anxiety -0.9627806
math_score 1.0000000

The output is a matrix of all intercorrelations. Note that the values above and below the diagonal are identi-
cal. There are very large correlations among many of the variables (a phenomenon called multicollinearity),
which could be problematic in later analyses. This is something to keep in mind.

Predict an Outcome with Two Predictors

The fnal task is to conduct a regression analysis, predicting an outcome variable with two predictor variables.
You and your team are noticed that math score was related to both trait anxiety and state anxiety, with a
particularly large correlation between math score and state anxiety. You are curious whether trait anxiety
adds anything to the prediction of math score. Multiple regression can be used to anxer this question.

The function lm(), which you saw earlier in the context of creating a regression line for a scatterplot, will
ft a linear model onto the data in d2. (Note that you can use the larger dataframe, d, if you prefer.) When
you save the results as an object, you can obtain the statistics for the regression.

model <- lm(d2$math_score ~ d2$state_anxiety + d2$trait_anxiety)
summary(model)

Call:
lm(formula = d2$math_score ~ d2$state_anxiety + d2$trait_anxiety)

Residuals:
Min 1Q Median 3Q Max
-9.946 -3.010 -1.240 3.368 10.092

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 100.9716 2.4618 41.016 < 2e-16 ***
d2$state_anxiety -2.8771 0.2055 -14.002 9.18e-11 ***
d2$trait_anxiety 0.7880 0.3374 2.335 0.032 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 5.651 on 17 degrees of freedom

17

Multiple R-squared: 0.9447, Adjusted R-squared: 0.9382
F-statistic: 145.2 on 2 and 17 DF, p-value: 2.059e-11

The output shows the coefcients for the intercept and each predictor, along with their signifcance. Although
state_anxiety is clearly the best predictor of math_score, trait_anxiety is still a signifcant predictor in
this model, suggesting the possibility of a unique contribution of trait anxiety to the variance in math score.

In addition, the output includes multiple R-squared and adjusted R-squared, along with the F test of the
linear model.

Check Regression Assumptions

The fnal step is to examine the assumptions of regression:

1. Linearity: Is the relationship between each predictor and the outcome linear?
2. Homoscedasticity: Is the variance of the residuals the same for any value of X?
3. Normality: For any value of X, is Y normally distributed?

Additional assumptions include independence of observations and random sampling, which you would need
to confrm with a review of your research methods.

There are four built-in plots for checking regression assumptions and diagnosing the quality of the model.
These plots can be called with plot() on the name of the model (in this case, model).

plot(model)

40 50 60 70 80 90 100

−
10

−
5

0
5

10

Fitted values

R
es

id
ua

ls

lm(d2$math_score ~ d2$state_anxiety + d2$trait_anxiety)

Residuals vs Fitted

16

14

9

18

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(d2$math_score ~ d2$state_anxiety + d2$trait_anxiety)

Normal Q−Q

14

169

19

40 50 60 70 80 90 100

0.
0

0.
4

0.
8

1.
2

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(d2$math_score ~ d2$state_anxiety + d2$trait_anxiety)

Scale−Location
1416 9

20

0.0 0.1 0.2 0.3 0.4

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(d2$math_score ~ d2$state_anxiety + d2$trait_anxiety)

Cook's distance 1

0.5

0.5

1

Residuals vs Leverage

1

14

2

Interpretation of Plots and Conclusions

The frst plot regresses the residuals on the ftted values. In a “good” model, the points would be randomly
scattered above and below the horizontal line; in the current model, however, there is a slightly parabolic
pattern to the residuals that suggests a potential problem with linearity.

The second plot is a Q-Q plot of the standardized residuals, which addresses normality. The points should
closely adhere to the regression line. In contrast, many of the points in the current model are rather far from
the the line. Note that R will label points that may be particularly infuential in a problematic way.

The third plot, called a scale-location or spread-location plot, examines homoscedasticity–whether the resid-
uals are spread equally along all values of the predictors. A roughly horizontal line with evenly distributed
points is desirable. In the current model, the points appear to follow a curve, suggesting lack of homoscedas-
ticity.

The fnal plot examines leverage, or the degree to which outliers infuence the regression model. In this plot,
points that are in the upper right or upper left corners (outside the dashed line, which indicates Cook’s
distance, a measure of leverage) are potentially problematic. In the current model, no points fall within
these areas, so this assumption is not violated.

What can you conclude from these diagnostics? Although the two predictors account for a very large
proportion of the variance in outcome (math score), this model may not be the best ft. Additional data
exploration and transformation may be needed.

21

References and Recommended Reading

• Kim, B. (2015, September 21). Understanding diagnostic plots for linear regression analysis. University
of Virginia Library - Research Data Services + Sciences. https://data.library.virginia.edu/diagnostic-
plots/

• R Project for Statistical Computing. (n.d.). https://www.r-project.org/

• Teetor, P. (2011). R cookbook. O’Reilly.

Contact Information

Thank you for participating in this lesson. If you have questions, please reach out to cb88@rice.edu.

22

https://data.library.virginia.edu/diagnostic-plots/
https://data.library.virginia.edu/diagnostic-plots/
https://www.r-project.org/
mailto:cb88@rice.edu

	Goal and Learning Outcomes
	Scenario: An Experiment to Reduce Math Anxiety in a Statistics Class
	Import the Dataset
	Importing Using the GUI
	Importing Using read.csv() and the File Name/Path

	Examine the Structure of the Dataframe
	Prepare the Dataframe
	Create Factors
	Remove Unnecessary Variables

	Obtain Summary Statistics
	Obtain Descriptive Statistics for Specific Variables
	Obtain Descriptive Statistics for Subgroups

	Create a Histogram
	Create Histograms for Subgroups

	Create a Boxplot
	Compare Two Group Means with an Independent Samples t Test
	Compare Two Means from the Same Group with a Paired Samples t Test
	Compare Multiple Group Means with a One-way ANOVA
	Examine Relationships with a Correlation Coefficient
	Create a Scatterplot
	Calculate Correlations Among Multiple Variables
	Prepare the Data for Additional Analyses
	Create a Correlation Matrix

	Predict an Outcome with Two Predictors
	Check Regression Assumptions
	Interpretation of Plots and Conclusions

	References and Recommended Reading
	Contact Information

